论文解读 | 微信看一看实时Look-alike推荐算法

作者丨gongyouliu

编辑丨lily

来源 | 授权转载自大数据与人工智能(ID:ai-big-data)

微信看一看的精选文章推荐(见下面图1)大家应该都用过,微信团队在今年发表了一篇文章来专门介绍精选推荐的算法实现细节(Real-time Attention based Look-alike Model,简称RALM算法),这就是我们这篇文章要讲解的内容。基于这篇文章(见参考文献1)的描述,再结合自己的理解,我来带大家一起解读一下这篇基于look-alike模型的实时推荐算法的核心亮点。

在本篇文章中,我会从RALM算法背景介绍、RALM模型架构和工程实践、RALM算法原理介绍等三个部分来介绍RALM算法,希望我的解读可以帮助大家更好地理解这篇论文,进而学习到一些做实时个性化推荐的思路和方法。

         

图1:微信看一看精选推荐

一 RALM算法背景介绍

在本节我们先简单介绍一下look-alike模型,再说明传统的look-alike模型应用于推荐系统(特别是微信的文章推荐)中存在的问题,最后来介绍RALM模型的核心思想及该模型是怎么很好地解决传统look-alike模型存在的问题的。

1 look-alike模型相关介绍

look-alike模型是一种流行的受众拓展(audience extension)技术(见参考文献2),大量应用于在线广告行业。对于一个待投放的广告(对于微信文章推荐,就是文章),点击过该广告的用户就是种子用户,look-alike方法就是基于一定的算法原理,找出候选用户集合(目标用户)中与种子用户相似的用户,将广告投放给这些相似用户的过程(见下面图2)。

             

图2:look-alike模型原理

将受众拓展应用于微信文章推荐,是从文章的角度来描述推荐过程:我们怎么更好地将文章推荐给喜欢该文章的人,而不是基于传统的推荐系统从人的角度来考虑的:怎么为某个人推荐喜欢的文章。受众拓展目前的研究主要关注用户表示和look-alike算法,即用合适的数据结构(一般是向量)来描述用户的偏好特征,再基于look-alike算法找到一批相似的用户。

用户表示基于用户特征,最简单的方式是用一个特征向量来表示每个用户,一般的表示方法向量维度很大并且很稀疏(比如文章数量为N,可以用N维向量表示用户,某一维为1表示用户看过该文章,否则为0),这类表示不是高效的,有了用户的向量表示后,就可以用向量相似的方法计算相似度了。另外一种可行的获取相似用户的方法是采用LSH或者Kmeans对用户聚类,这样同一类的用户就是相似的用户,这种方法比较粗糙,容易丢失信息。

从关于look-alike模型的相关文献可以发现,当前look-alike模型主流的算法主要有两类:基于相似性的方法和基于回归的方法,下面分别简单介绍。

相似性方法,计算出用户的嵌入向量表示,基于某种距离测量方法(如consine余弦、欧氏距离、内积等)计算种子用户和目标用户之间的相似性。某个目标用户跟一组种子用户的相似性可以取该用户与种子用户相似性的平均值,通过这种方式,只有跟平均值相似的候选用户才能够被选中,而只跟种子用户集中某个或者某些种子用户很相似的候选用户将不会被选中。换句话说,部分种子用户所包含的信息将会丢失。

基于回归的方法,将look-alike问题看成是回归问题。最简单的方式是对每个item(即微信文章)训练一个LR模型,种子用户看成是正样本,通过抽样部分非种子用户作为负样本。这时,与种子用户相似的用户会获得较高的得分(LR预测值)。另外,FM和MLP等方法都曾用于受众拓展问题。所有这些回归类方法本质上都是基于用户特征最大化观察到的种子用户的行为,这类方法最大的问题是需要花费较长的时间针对每个item训练离线模型,另一方面,回归列方法需要积累足够多种子用户作为模型的正样本(对于新的item就无能为力了),同时当新用户加入时需要重新训练。当频繁有新用户加入时,回归类方法就力不从心了,因此回归类方法不太适合实时的受众拓展场景。

雅虎16年提出了一个结合相似性和回归两种方法的受众拓展方案(见参考文献3),首先,对用户进行聚类,对某篇文章,生成待推荐的用户候选集(看过该文章的用户所在聚类的并集就是候选集)。其次,基于LR或者简单的特征选择方法过滤掉不相关的用户。该方法可以解决雅虎海量数据集及大规模受众拓展的问题,虽然该算法可以做实时的look-alike,但该算法相对简称粗暴,精度不够。

2 传统受众拓展模型应用于推荐系统存在的问题

不同于广告,将受众拓展技术(look-alike)应用于微信文章推荐,需要考虑如下三个方面的问题,这3点即是微信文章推荐对受众拓展技术提出的要求。

(1) 实时性

被推荐的文章是实时产生并加入到微信的文章推荐池中的,由于文章具备时效性,因此,希望推荐算法可以实时地将文章分发出去。对于文章的推荐,这个是一个硬性要求。

(2) 有效性(effective)

受众扩展方法与主流的基于CTR预估的推荐方法不太一样,是CTR预估的补充策略,我们必须提高受众拓展预测的有效性,并尽最大努力保持预估的性能。同时,实时文章推荐对用户兴趣表示和种子特征表示的准确性和多样性提出了更高的要求。

(3) 性能

对于某一篇待推荐文章,有上百万的种子用户,有成千上万的候选用户可作为受众拓展的对象。受众拓展方法必须实时地对上万计的候选用户打分,因此look-alike模型必须足够简单,能够在极短的时间计算出得分并确定最终推荐的用户。

对于微信文章推荐,“马太效应”明显,头部内容越来越受欢迎,而高质量的长尾内容得不到足够的曝光和关注,这个问题严重影响推荐系统的推荐质量和多样性。为了解决该问题,look-alike算法是一种比较好的将高质量的长尾内容拓展到新用户的方法。但是基于前面的介绍,广泛用于在线广告的传统look-alike算法不太适合推荐系统,主要是因为推荐系统对实时性和有效性有较高要求。

一般来说,实时的look-alike模型需要实时计算种子用户与目标用户的相似性,由于种子用户和目标用户表示的低效,最终的效果不尽人意。主要的困难在于:

(1) 用户表示

为了提高用户兴趣的多样性,需要将尽可能多的用户特征用于用户表示学习,这正是深度学习算法擅长的。

深度学习模型虽然可以建模多维度特征,深度学习模型具备学习特征之间的高阶交互和隐含信息的能力,通过深度学习模型我们可以获得用户的稠密嵌入表示,但对于包含强相关和弱相关的多域(multi-fields feature)特征,深度学习的拼接层效果不够理想,对于强相关特征(比如兴趣标签)容易过拟合,对于弱相关特征(比如购买特征)会欠拟合。

(2) 种子表示

推荐系统中的种子用户是逐步累积的,包含大量用户,并且可能包含“噪音”用户,怎么表示种子用户是面临的一个有挑战的问题。首先,为了提升鲁棒性,每个种子用户对种子群(后面会提到RALM算法会对种子用户聚类,每一类就是一个种子群)的贡献应该不一样。另一方面,由于种子用户中包含大量用户,目标用户一般只跟种子用户中很少的用户有相似性,因此,我们需要建模局部信息获得适应性。

总结一下,对于推荐业务,由于长尾内容包含的内容特征稀少,look-alike方法是一个很好的解决方案,它只依赖于种子用户(点击过该内容的用户)作为输入,而不在意内容本身的特征多少,问题的挑战就变为,怎么选择种子用户以及怎样通过种子用户拓展到更多的其他用户中。

3 RALM算法简介

为了解决推荐系统对实时性和有效性的要求,参考文献1提出了实时注意力look-alike模型(RALM)。RALM是一个基于相似性的look-alike模型,包含用户表示学习和look-alike模型学习。

对于用户表示学习,不是用传统的拼接层(concatenation layer)而是用基于注意融合层(attention merge layer),这种方法对于多维度(multi-fields)特征有很好的表现。为了优化种子用户的表示学习,look-alike模型基于全局和局部注意单元分别学习种子用户的全局和局部表示。并且使用异步在线训练种子用户聚类的方法减少种子用户规模和注意单元在线预测的时间。这篇论文的主要贡献有如下3点:

(1) 提升了用户表示学习的有效性

对于多域用户兴趣表示学习,论文设计了一种引入了注意融合层的深度兴趣网络,这种注意力融合层解决了由强相关特征和弱相关特征分别带来的过拟合和噪音问题。通过在线实验,证明了注意融合层相比拼接层能够更加有效地捕获用户各种不同的兴趣偏好。

(2) 提升了种子用户表示学习的鲁棒性和适应性

利用全局注意单元来学习种子用户的全局表示,全局注意单元对单个用户的表示进行加权,并且惩罚噪音用户,这比所有用户权重一样更具有鲁棒性。利用局部注意单元来学习种子用户的局部表示,它对种子用户与目标用户的相关性进行加权。局部注意单元动态地基于目标用户来学习种子用户的表示,对于不同的目标用户,学习到的种子用户表示也不一样,这极大地提升了种子用户表示的表达能力。

(3) 实现了一个实时的、高性能的look-alike模型

为了更新最近的种子用户信息,种子用户的局部和全局表示的学习过程必须做到实时。考虑到注意力单元计算的复杂性,论文利用kmeans聚类将种子用户聚为k类。这种处理方法在保证种子用户信息损失最小的情况下,极大地降低了look-alike模型计算的复杂性。同时,当种子用户的向量表示在模型学习过程中微调时,聚类结果也会随着变化。论文引入了种子用户聚类和深度学习look-alike模型迭代训练的方法。基于种子用户到目标用户的的look-alike模型,只需种子用户和目标用户的向量表示灌入预测模型,候选的文章就可以被推荐出来。

二 RALM模型架构及工程实践

第一部分对look-alike模型的背景、传统look-alike模型应用于推荐中存在的问题及RALM的特性进行了简单介绍。在本节,我们从更高层面的视角来介绍RALM受众拓展算法的工程实现。

1 概览

在微信“看一看精选”中(见图1),有好几种类型的候选文章集供受众拓展,比如最新的新闻、人工打标签的高质量文章、长尾有意思的内容等,所有这些内容都是实时产生的,并注入到推荐池中。一般同时又成千上万的候选文章集供受众拓展,对每个候选文章,推荐系统收集点击过候选集的种子用户并实时更新种子用户的聚类结果。

用户向量通过用户表示学习算法离线生成,种子用户的全局和局部向量表示基于种子聚类和离线look-alike模型在线实时计算出。当用户点击精选推荐时,推荐系统的后端服务模型首先获取当前用户的向量表示,然后对每个推荐候选文章迭代计算该用户跟该候选文章的种子用户的look-alike相似性,从而计算出候选推荐文章的得分。

整个推荐过程可以分为三个部分:离线训练、在线异步处理及在线服务,下面分别介绍。整个算法流程见下面图3。

            图3:基于RALM算法的受众拓展系统架构

2 离线训练

受众拓展的在线服务依赖用户嵌入表示和种子嵌入模型。我们分两个步骤离线训练look-alike受众拓展模型,分别是用户表示学习和look-alike学习。

(1) 用户表示学习

用户表示学习基于深度学习模型构建,利用用户的所有特征作为模型输入,用户在微信的行为作为训练样本,包括读文章、播放视频、购物、播放音乐、订阅等等。用户表示学习模型的输出就是用户的嵌入向量表示,该表示包含了用户多域特征。

(2) look-alike学习

look-alike学习基于注意力模型和聚类算法,l利用上面(1)中获得的用户一致表示作为模型输入,利用受众拓展活动样本作为训练样本,获得look-alike嵌入表示,最终用于look-alike相似性预测。在这一过程中构建全局和局部种子嵌入表示的注意力模型,用于预测种子用户的嵌入表示。

3 在线异步处理

在线异步处理的主要目的是实时更新种子的嵌入表示。在受众拓展模型提供服

务过程中,种子用户的数量是一直累积的,应用kmeans聚类将所有种子聚为k类。异步处理的工作流分为2步:

(1) 用户反馈行为监控

受众拓展系统通过监控微信用户的实时点击行为来更新候选推荐文章的种子集。种子用户数量的爆发增长会影响聚类的性能,因此该算法只保留最新的3百万点击用户作为某个待推荐文章的种子用户。

(2) 种子聚类

虽然种子是实时更新的,当有新种子加入时,聚类过程不必每次都更新。该系统每隔五分钟运行一次种子聚类过程,将新加入的种子聚类。聚类中心的嵌入表示作为类中种子的初始表示存入数据库中,将会用于在线预测种子的嵌入表示。所有种子的嵌入表示定义为

             

其中, 是第i个聚类的嵌入表示。

4 在线服务

首先,受众拓展系统获取当前用户的look-alike嵌入表示,其次,对每个候选推荐文章,取该文章的种子用户的聚类中心嵌入表示作为look-alike模型的输入,look-alike模型通过全局注意单元预测种子的全局嵌入表示、通过局部注意单元预测种子的局部嵌入表示。最后,在线服务模块计算look-alike模型的全局和局部相似性(即当前用户与种子用户的全局和局部相似性)得分。对于用户 u 和 种子 s ,look-alike模型的得分为

              

这里,是种子的全局嵌入表示,是种子的局部嵌入表示,是权重因子。对微信精选取。look-alike模型的得分将被用于ctr预估工作流的权重因子。

由于RALM基于相似性计算,并且只通过获取高阶(high-level)的嵌入作为输入,在线look-alike服务是简单高效的。

三 RALM算法原理介绍

第二部分我们介绍了RALM算法的工程实现相关的知识,在本节,我们来介绍一下RALM算法核心模块的具体实现。主要包括用户表示学习、look-alike相似性模型。在讲解之前,先来介绍微信文章推荐中用于模型训练的特征有哪些。

1 特征

有很多种特征可以描述用户的兴趣,主要包括类别特征和连续特征两大类。类别特征包括单一的(如性别、地理位置等)和多样的(如用户感兴趣的关键词)特征。对于代表分类特征的值或者一组值,该特征称为特征域 。对于像年龄这些连续特征,预训练好的特征向量先标准化并缩放到0到1之间。在微信中可用特征包括性别、年龄、地理位置、兴趣标签、感兴趣的类别、APP是否登录、媒体id、账号订阅、购物兴趣偏好、搜素兴趣偏好、社交网络关系等。

2 用户表示学习

用户的兴趣一般会非常复杂和广泛,用户的年龄、国别、用户读过的文章决定了用户下一篇要读的内容。因此,我们设计一个深度学习模型来学习用户多样的特征,构建用户对内容兴趣的综合表示。该模型是非常巧妙的,包含抽样、模型结构、注意力融合层 ,下面分别介绍。

(1) 抽样

我们将用户表示学习看成一个多分类问题:从百万级待推荐文章中选择用户感兴趣的。在计算loss时,为了提升训练速度,采用负采样技术而不是传统的softmax。显然,如果我们随机挑选样本作为负样本,抽样分布将偏离真实情况。借鉴word2vec中NCE负采样的思路(见参考文献4),为了获得无偏分布,先将候选推荐item集合按照被点击的次数降序排列,然后计算每个item的概率,该概率依赖刚于讲到的item排序,具体计算公式如下:

             

这里是第i个item,k是第i个item 的排序,D代表所有item的最大排序。代表将item i 选为负样本的概率。由于活跃用户行为决定了最终训练损失,我们限制每个用户选择的样本个数,每个用户最多选择不超过50个正样本,并且抽样使得正负样本比例保持在 1/10。然后利用softmax函数来计算某一次选择c在用户特征为U及item i特征为情况下选择出item i的概率

 

           

上式中u是用户的嵌入向量,是item j的嵌入向量。

整个训练过程同时利用用户的显式和隐式反馈行为,更多的训练数据可以增强推荐结果的多样性。用户在所有类型内容(文章、视频、网站等)上的行为都会用来作为训练样本,确保囊括了用户的所有兴趣点。

(2) 模型结构

我们用YouTube DNN(见参考文献5)作为模型的基础骨架,该模型包含嵌入层、拼接层、MLP层。在嵌入层,将同一field(比如用户点击行为、用户购买行为、年龄、性别等都是不同的field)的所有特征嵌入到固定长度的向量中,然后输入到平均池化层中。当所有field的特征都嵌入后,将它们拼接起来形成稠密向量,再灌入MLP层。最后一层的输出就是用户的嵌入向量表示。item的嵌入是随机初始化的,在训练过程中不断更新。该模型方便整合异质多域特征。

对于用户嵌入 u 和 item i 的嵌入表示,我们计算和交叉熵损失

   

         

这里是label,我们利用Adam优化器来训练,求最小值。当loss收敛时,最后一层的输出就是用户的嵌入向量表示。

(3) 注意力融合层

在基础模型中,不同特征域是拼接起来的,类似这样。然而,通过观察网络参数的训练过程,我们发现优化过程总是对与用户兴趣很相关的特征(比如兴趣标签)产生过拟合,导致推荐结果由少量的强相关的field决定。弱相关的field(比如购物偏好),总是欠拟合的,但它们对推荐也至关重要。最终导致的结果就是模型不能完全学习到多域特征,推荐结果缺乏多样性。

为了解决该问题,我们在模型中用注意力融合层而不是拼接层。在基础模型中,拼接让所有用户的兴趣服从同一概率分布。这样,少量对大多数用户产生影响的强相关的field,它们的权重很大,导致出现高维稀疏权重矩阵。注意力单元可以根据用户的上下文特征学习权重的个性化分布,对不同field可以激活神经元的不同部分,在训练过程中强相关和弱相关的field都可以起作用,因此我们采用注意层来学习用户相关的多域权重。

              图4:用户表示学习的模型结构:右边是用户表示学习模型,左边是look-alike模型

上面图4右边是用户表示学习模型,n个field被嵌入到维度为m的向量,我们将它们按照第二个维度拼接起来形成矩阵,我们按照如下公式计算权重向量:

             

这里是权重矩阵,k 是注意单元的size。是field 的激活单元,是field的权重。最后,我们计算融合向量,这个值作为MLP的输入,获得了一致的用户嵌入表示。注意融合层相比拼接层,在学习多域特征上有极大的优势。

3 look-alike模型学习

通过上面2中用户表示算法的介绍,我们获得了一致的用户嵌入表示,现在我们需要学习种子用户和目标用户之间的相似关系。该学习任务也是基于用户对item行为的监督学习过程,只不过该学习过程聚焦于特定的活动,在该活动中用户只展示部分兴趣。下面我们将介绍look-alike学习过程,我们会从模型结构、变换矩阵、局部注意单元、全局注意单元、迭代训练、损失等6个维度来介绍。

(1) 模型结构

look-alike模型由两个塔构成(见上面图4左边),左边的塔称为种子塔,将n个种子用户的嵌入()作为模型输入,这里m是用户嵌入向量的维数,后面跟着全连接层,作为第一层,它将输入矩阵变换为矩阵,这里h是变换后嵌入向量的维数。之后,一个自我注意单元(self attension unit)和一个一般注意单元(general attention unit)用于池化嵌入向量,最终生成一个h维的向量。右边的塔称为目标塔,将m维向量变换为h维向量。在这两个塔的上面,两个塔输出向量的内积被计算出来,代表种子用户和目标用户的相似性。对于推荐系统来说,相似性代表的是某个item被目标用户点击的概率。

(2) 变换矩阵

的权重矩阵被用于从一致的用户嵌入空间到look-alike空间的投影。虽然用户嵌入是从用户的多种行为中学习而来,但将预训练的特征作为模型的输入可能会过拟合。为了避免过拟合,我们用双塔结构共享变换矩阵。模型输出非线性特征之前经过ReLU单元变换,变换后,种子用户被表示为n个维度为h的向量。

(3) 局部注意单元

为了计算种子用户和目标用户的相似性,我们需要将所有种子用户池化为一个向量,平均池化是通常采用的做法。然而,平均池化获得的是所有种子向量的均值,这样公共的信息被保留了,而异常值和个性化信息被忽略了。一般来说,在上百万的种子用户中,只有很少用户的兴趣跟目标用户是匹配的。因此,我们引入局部注意单元,用于激活相对于某个目标用户的局部兴趣,同时自适应地学习种子用户相对于目标用户的个性化表示。

             

这里是注意力矩阵,是种子用户,代表目标用户,是种子用户的局部嵌入。如果某个item有百万级的种子用户,局部注意单元将会花费次计算,这里n是百万量级,线上预测肯定会存在问题。为了减少计算的复杂度,我们将种子用户利用Kmeans聚类聚成k类,对于每一类我们计算种子向量的均值作为该类的向量表示,这样我们就获得了k个h维的向量。这时计算复杂度就从降到,一般k小于100。

(4) 全局注意单元

对于种子用户的全局信息,我们加入自我注意力单元来模拟每个种子用户的全局表示:

     

       

这里,是注意力矩阵,s是注意力的维数。代表种子用户的全局嵌入表示。由自我注意力获得的全局信息与的兴趣分布相关。有了局部和全局表示      和,我们就可以按照如下公式计算种子用户和目标用户的相似性了。

       

     

 

(5) 迭代训练

在变换和反向传递之后,用户的嵌入表示会改变,为了保持种子聚类和用户表示两个过程的同步,每个epoch之后重新运行一次聚类。因此,我们提出了一个迭代训练过程,一轮一轮交替地训练look-alike模型和种子聚类两个算法。

(6) 损失

我们利用sigmoid交叉熵损失做为损失函数:

   

         

这里D代表训练集大小,x代表用户嵌入,y是label。 是通过sigmoid函数计算出的种子用户和目标用户的相似性得分。

四 总结

这篇论文通过引入RALM算法来解决实时的受众拓展问题,这是一个两阶段的模型,包括用户表示学习和look-like学习。

对于用户表示学习,论文提出了一种基于注意力融合层(attention merge layer)的新的神经网络结构取代经典的拼接层(concatenation layer),该网络结构大大提升了多特征学习的表达能力。在look-alike模型学习中,针对每个目标用户该论文设计了一个全局注意力单元(global attension unit)和局部注意力单元(local attention unit)来学习种子用户的鲁棒性自适应特征表示。最通过引入种子用户聚类方法,不仅减少了注意力模型预测的时间复杂度还减少了种子表示的信息损失。同时,构建了一个包含训练和在线服务的推荐系统,借助异步处理和种子聚类,在线预测才可以做到实时。

通过在线实验,该方法取得了比传统look-alike模型好得多的效果,特别是在推荐多样性和推荐质量上有较大提升。该模型是第一个应用于推荐系统的实时look-alike模型。

参考文献

[2019] Real-time Attention Based Look-alike Model for Recommender System

[2011] A feature-pair-based associative classification approach to look-alike modeling for conversion-oriented user- targeting in tail campaigns. 

[2016] ASub-linear,Massive- scale Look-alike Audience Extension System A Massive-scale Look-alike Au- dience Extension 

[2013] Distributed representations of words and phrases and their compositionality 

[2016 YouTube] Deep Neural Networks for YouTube Recommendations

推荐阅读

AI科技大本营
关注 关注
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
[论文解读]微信看一看实时Look-alike推荐算法
05-28 3137
微信看一看的精选文章推荐(见下面图1)大家应该都用过,微信团队在今年发表了一篇文章来专门介绍精选推荐的算法实现细节(Real-time Attention based Look-alike Model,简称RALM算法),这就是我们这篇文章要讲解的内容。基于这篇文章(见参考文献1)的描述,再结合自己的理解,我来带大家一起解读一下这篇基于look-alike模型的实时推荐算法的核心亮点。 在本篇文...
论文解读】RALM:微信看一看中基于Attention机制的实时Look-alike推荐模型
Juanita_W的博客
06-02 1189
论文解读】RALM:微信看一看中基于Attention机制的实时Look-alike推荐模型 前段时间读了来自微信团队发表在KDD2019上的一篇论文《Real-time Attention Based Look-alike Model for Recommender System》,简称是RALM,主要介绍的是一种将Attention机制与look-alike模型结合后的实时推荐模型,这个算法目前应用在了微信看一看”模块上。 在读论文的过程中产生了许多疑问,也查找了不少资料。因为网上对这篇论文解读
look like算法
08-20
这是一个介绍look like的算法,里面涉及到网页浏览预测和广告响应预测
五个工业风满满的 Look-alike 算法
fengdu78的博客
07-16 972
1. Introduction广告主通常会基于用户标签来圈定广告的目标人群,比如广告主想投奥迪的广告可能会选择北方 25~44 岁男性;投奔驰可能会选择江浙地区 25 ~55 岁男性。但受...
Lookalike算法调研
dulingtingzi的博客
10-13 5708
参考了很多优秀博主的文章,这属于一个汇总吧 参考文章:(还有很多,在后面的连接里) Lookalike的几种实现方式 | GA小站 计算广告中的lookalike是如何实现的? - 简书 1、什么是lookalike lookalike算法是计算广告中的术语,不是单指某一种算法,而是一类方法的统称。其目的是基于目标人群,从海量的人群中找出和目标人群相似的其他人群,实现人群包扩充。 比如:广告主需要对100w人投放,但是,从选取的基础数据包中,只有30w,那么如何满足100w的投放需求,这时,就.
【推荐系统】五个工业风满满的 Look-alike 算法
fengdu78的博客
07-05 593
1. Introduction广告主通常会基于用户标签来圈定广告的目标人群,比如广告主想投奥迪的广告可能会选择北方 25~44 岁男性;投奔驰可能会选择江浙地区 25 ~55 岁男性。但受...
1-5+RALM:实时Look-alike算法在微信看一看中的应用.zip
03-18
总结起来,1-5+RALM实时Look-alike算法是微信看一看提供个性化内容推荐的核心技术,它通过实时分析用户行为,精准定位潜在的高价值用户,提高了内容分发的效率和用户满意度,体现了大数据与人工智能在个性化推荐领域...
RALM: 实时 Look-alike 算法在微信看一看中的应用
DataFun_Hoh的博客
11-25 1405
嘉宾:刘雨丹 腾讯 高级研究员 整理:Jane Zhang 来源:DataFunTalk 出品:DataFun 注:欢迎关注DataFunTalk同名公众号,收看第一手原创技术文章。 导读:本次分享是微信看一看团队在 KDD2019 上发表的一篇论文。长尾问题是推荐系统中的经典问题,但现今流行的点击率预估方法无法从根本上解决这个问题。文章在 look-alike 方法基础上,针对微信看一看的应用...
RALM:实时Lookalike算法在微信看一看中的应用(19页).pdf
03-04
RALM:实时Lookalike算法在微信看一看中的应用(19页).pdf
LSH以及Look-alike 技术总结: Similarity-based,Regression-based,Attention-based
weixin_40901056的博客
07-26 2324
Look-alike简介 Look-alike是在线营销活动中常用的一种技术,目的是根据广告主提供的用户,帮助其进行人群圈选。Look-alike的输入是一个user列表(可以是user id 或者电话号码等id标识),这个user列表可以是广告主上一次活动的人群,可以是广告主的已有用户中高净值人群等等。这个输入人群列表有个专有名次叫做“种子用户(seeds)”。而Look-alike的输出还是一...
LOOK电梯调度算法
06-10
采用C++对操作系统课程中的LOOK电梯调度算法进行简单的描述,望采纳
技术文章 | 深度学习在推荐领域的应用:Lookalike 算法
CS13522431352的博客
08-28 1174
当2012 年Facebook 在广告领域开始应用定制化受众(Facebook CustomAudiences)功能后,受众发现这个概念真正得到大规模应用
Lookalike 技术调研【归档至github.io】
蝉之洞
04-19 4240
转自: https://www.jianshu.com/p/c7957ac169f1What基本上所有的互联网公司都有其广告投放平台,这是给广告主投放广告的一个页面。广告主可以通过广告提交页面提交自己的广告需求,后台会给广告主圈定一部分潜在用户,这个就是我们称为Lookalike的模块。lookalike 不是某一种特定的算法,而是一类方法的统称,这类方法综合运用多种技术,最终达到目的。How第一...
推荐系统 新用户引导
banbuduoyujian的博客
01-24 1845
在推荐系统中,新用户的冷启动是一个比较棘手的问题。如何通过适当的引导策略使新用户产生更多的点击行为,从而能够快速的学习用户的兴趣偏好,是一个具有挑战与实际意义的问题。本文结合短视频推荐场景,罗列一些可能的引导方法。 1、question/answer:该方法通过事先让新用户做出选择进而学习用户的兴趣偏好。例如,用户在第一次登录新浪微博时,系统会让用户选择一些其感兴趣的类目。该方法需要用户参与调查,
用c语言写一个look算法,帮忙看看一个算法设计题,用C语言实现 设计一个算法:...
weixin_34175388的博客
05-23 374
导航:网站首页 >帮忙看看一个算法设计题,用C语言实现 设计一个算法:帮忙看看一个算法设计题,用C语言实现 设计一个算法:相关问题:匿名网友://排序思想是一轮快速排序#include#includetypedefstructaa{intdate[100];inttop;}aa,*pa;pacreat(){paa=(aa*)malloc(sizeof(aa));if(a)a-...
微信朋友圈 Lookalike 算法
Lloyd-He
11-17 1847
朋友圈的广告推送原理今天做点笔记,简单记录一下 Lookalike是做什么的 通常广告主投放广告,通过提交广告需求,后台圈定一部分潜在用户,这称为Lookalike模块 一般Lookalike的做法: 1、显性定位,广告主根据用户标签直接定位,比如说通过年龄、性别、地域这样的标签来直接圈定一部分用户进行投放。技术支持用户画像的挖掘。 缺点: 不够精准,通过标签指定的用户量大,需要精准筛选 2、机器学习来定位广告主的潜在用户。重点在于问题怎么转化成一个机器学习的模型呢?学习样本是什么? 优化目标是什么? 广告
用c语言写一个look算法,LOOK和C LOOK调度算法图解
weixin_39652154的博客
05-23 1822
就像SCAN调度算法一样, 除了不同之处在于, 在该调度算法中, 当在该方向上不再有请求时, 磁盘的臂停止向内(或向外)移动。该算法试图克服SCAN算法的开销, 该开销迫使磁盘臂沿一个方向移动到最后, 而不管是否知道该方向上是否存在任何请求。例子考虑以下具有100个磁道的磁盘的磁盘请求顺序98, 137, 122, 183, 14, 133, 65, 78头指针从54开始并向左移动。使用LOOK调...
lookalike模型综述
bitcarmanlee的博客
06-02 1142
首先我们需要知道,lookalike不是某一种特定算法,而是某一类算法或者策略的总称。具体来说,在某个实际业务场景中,我们可能会先根据某些规则或者业务经验,选出一些好用户,即所谓的种子用户。这些用户往往精度很高,能精确贴合我们业务场景,但是一般人数较少。这个时候,我们就需要通过lookalike算法,根据种子用户,对人群来进行扩充,来满足实际业务需求。举个实际例子,广告主在进行广告投放的时候,可能事先会给定1w个种子用户,这些种子用户对广告的响应与转化都很高。
磁盘调度算法之先来先服务(FCFS),最短寻找时间优先(SSTF),扫描算法(SCAN,电梯算法),LOOK调度算法
最新发布
jungleirim的博客
10-29 7459
扫描算法(SCAN)中,只有到达最边上的磁道时才能改变磁头移动方向,事实上,处埋了184号磁道的访问请求之后就不需要再往右移动磁头了。本例中,如果在处理18号磁道的访问请求时又来了一个38号磁道的访问请求,处理38号磁道的访问请求时又来了一个18号磁道的访问请求。C-SCAN算法的主要缺点是只有到达最边上的磁道时才能改变磁头移动方向,并且磁头返回时不一定需要返回到最边缘的磁道上。如果磁头移动的万同上已绘没有磁道访问请求了,就可以立即让磁头返回,并且磁头只需要返回到有磁道访问请求的位置即可。
微信看一看实时推荐算法:RALM深度解析
总结来说,RALM算法是微信推荐系统中的一个创新点,它通过实时注意力和深度学习的结合,有效地解决了长尾内容曝光不足的问题,提高了推荐系统的整体质量和多样性。这个模型的引入,展示了在内容推荐领域中深度学习...
写文章

热门文章

  • 深度学习面试必备的25个问题 145068
  • 清华周界详解《基于图神经网络的事实验证》 | 百万人学AI 131409
  • 感动!有人将吴恩达的视频课程做成了文字版 106326
  • 用AI给黑白照片上色,复现记忆中的旧时光 68378
  • 详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割... 65471

分类专栏

  • 行业资讯 251篇
  • 芯片 14篇
  • 物联网 10篇
  • 测试 2篇
  • 笔记 11篇
  • 软硬件 2篇
  • 百度智能云 5篇
  • 新能源
  • ADAS
  • 自然语言处理 3篇
  • 大数据 5篇
  • 光线追踪 1篇
  • GPU 1篇
  • 多线程 1篇
  • OpenAI 2篇
  • GPT-3 2篇
  • Golang 1篇
  • facebook 1篇
  • 算法 5篇
  • 微软 2篇
  • chrome 1篇
  • firefox 1篇
  • 搜索引擎 1篇
  • html 1篇
  • 超链接 1篇
  • 图片识别 1篇
  • http 1篇
  • DDoS 1篇
  • 无人驾驶 1篇
  • 人群密度 1篇
  • 金融科技 2篇
  • 评人工智能如何走向新阶段? 33篇
  • 数据众包 2篇
  • 电动车 1篇
  • 知乎 1篇
  • AI优秀案例奖 1篇
  • 多场景匹配 1篇
  • 微软小冰 3篇
  • 音乐 1篇
  • OPPO 1篇
  • 特步 1篇
  • 工作站 1篇
  • 华为 1篇
  • 竞赛 1篇
  • AI 546篇
  • 人工智能 540篇
  • 机器人 9篇
  • 神经网络 10篇
  • 机器学习 51篇
  • Python 24篇
  • 百度 30篇
  • 图像开放平台 2篇
  • 区块链 1篇
  • 开源 6篇
  • 深度学习 25篇
  • 语音识别 7篇
  • 云计算 5篇
  • AI名人堂 5篇
  • AI聚变 1篇
  • NLP 12篇
  • 数据科学 6篇
  • 强化学习 4篇
  • 计算机视觉 12篇

最新评论

  • 整理了 10 个 Python 自动化办公"案例",效率提高 100 倍!

    Freerain99: 非常感谢,例子非常好,通俗简短易懂

  • 破解非完美信息场景应用,微软公布专业十段麻将AI技术细节

    2401_87673450: 连接麻将普通系统

  • 图灵奖得主杨立昆:星舰不算科学成就,而是工程成就;现在 AI 全方面不如猫,智力、记忆和好奇心都差得远...

    Cirno_09: 哈基米AI就该狠狠爱表情包

  • 图灵奖得主杨立昆:星舰不算科学成就,而是工程成就;现在 AI 全方面不如猫,智力、记忆和好奇心都差得远...

    一个老程序袁: Le kun 想要的不是人工智能了吧,是生物智能了,先做出一个大脑让它自已学习,这种的更危险,有意识了。。

  • 谷歌 AI 产品经理:“软件工程师现在能够处理比过去复杂十倍的问题,Gemini 已成为性价比最高的 AI 开发首选平台”...

    PerfXCloud大模型平台: 这篇文章真是干货满满,作者对技术细节的把握和解析非常到位,让我对这个主题有了更深入的理解。期待作者能分享更多这样的高质量内容!

大家在看

  • 【大数据学习 | Zookeeper】Zookeeper的选举机制
  • 无监督学习:其一聚类
  • 【力扣 + 牛客 | SQL题 | 每日3题】SQL大厂面试题SQL156, 157
  • 数据结构之队列
  • 【Python小游戏12——愤怒的小鸟】

最新文章

  • 花 3 万美元买“人工”智能?特斯拉 Optimus 机器人遭“打假”:有人在背后远程操控!...
  • 海内外专家共话大模型、Rust、具身智能等最新进展,GOSIM CHINA 2024圆满收官!...
  • 百度AI在中国传媒大学“放大招”,数字人李白挑战“诗词达人”
2024
10月 25篇
09月 49篇
08月 53篇
07月 65篇
06月 68篇
05月 73篇
04月 63篇
03月 64篇
02月 20篇
01月 12篇
2023年367篇
2022年624篇
2021年866篇
2020年1111篇
2019年1725篇
2018年1194篇
2017年309篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家江西欧式玻璃钢雕塑设计辽宁玻璃钢雕塑美陈装饰成都玻璃钢广场雕塑价格上海景观玻璃钢雕塑方法忠县玻璃钢仿铜雕塑园林玻璃钢动物雕塑销售厂湛江玻璃钢蜗牛雕塑昭通玻璃钢商场美陈上海拉丝玻璃钢雕塑报价成都木纹玻璃钢雕塑潮州玻璃钢透光雕塑现货海口玻璃钢雕塑厂家马鞍山玻璃钢雕塑多少钱青海景区玻璃钢雕塑订做寻求优质的玻璃钢花盆江西景观玻璃钢雕塑定制潮州玻璃钢动物雕塑图片青海人物玻璃钢雕塑订做南宁创意玻璃钢雕塑定做价格苏州商场商业美陈定制商场中心美陈宝鸡玻璃钢雕塑价格邯郸彩绘玻璃钢雕塑庆阳彩色玻璃钢雕塑定做哪里有玻璃钢雕塑定制中山玻璃钢雕塑总代直销珠海玻璃钢卡通雕塑推荐货源广东花钵玻璃钢雕塑公司江苏商场玻璃钢雕塑设计厂家品牌玻璃钢雕塑尺寸香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化