Transformer编解码模型

1.Transformer:也是编解码模型结构
    编码器:多头的self-Attention + 标准化残差 + 前馈神经网络 +标准化残差
    解码器:多头遮蔽的self-Attention + 标准化残差 + 多头的全局的Attention + 标准化残差 + 前馈 + 标准化残差

    编码阶段都是为了得到一个语义向量C
    解码阶段都是通过语义向量C得到一个一个的输出

    word embedding:文本中每个词/字所对应的向量
    pos embedding:位置的embedding嵌入

2.第一层的self—attention作用:对自己本身加权(提取自身信息)
    多头机制作用:为了提取更多更全的信息
3.为什么transformer当中要加入位置嵌入?
    LSTM时间步潜在就是位置的信息,但是transformer当中是把整句话一块作为输入,
    那么就丧失了词与词之间的位置信息。
4.如何做位置嵌入?
    1.位置信息能在某个小范围里,例如(0,1) (-1,1)
    @为什么要在小范围:
        可以反映出位置之间的关系
    2.能表示出来位置之间的关系
    sin-cos函数可以满足上边两点
    和差化积公式
    奇数用cos编码,偶数用sin编码

解码器输入:word embedding+位置的embedding
    多头遮蔽的self-attention:
        进行QKV的计算,有mask(遮蔽)
    mask:decoder的输入和decoder的输出错开了一位
    因为transformer里边根本就没有时间步的概念,所以,我们decoder的输入是一句话:
    <s>怎么老是你,decoder输出:怎么
    能不能把decoder的输入部分:怎么老是你给盖住(mask):<s>maskmaskmaskmask去预测
    decoder的第一个输出:怎么,预测出来以后,<s>怎么maskmaskmask去预测:老
    为什么要进行遮蔽:因为输入的是一整句话,但是要通过前边的词预测后边的词
    全局attention:为了关联编码器和解码器

    Transformer 与 RNN 不同,可以比较好地并行训练。
    Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
    Transformer 的重点是 Self-Attention 结构,其中用到的Q, K, V矩阵通过X输入到self—attention得到输出Z经过线性变换得到。
    Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

Transformer:

编码器:多头的self-Attention + 标准化残差 + 前馈神经网络 +标准化残差

解码器:多头遮蔽的self-Attention + 标准化残差 + encoder-decoder Attention + 标准化残差 + 前馈 + 标准化残差
encoder-decoder Attention就是一个普通的Attention是判断编码的输出语义向量C和当前翻译的一个Attention关系的。因此解码器相比较编码器来说仅仅多了一个mask和encoder-decoder Attention。

 

看到这个图时,是不是和seq2seq差不多,因为它们都是编解码的结构。

可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下:

第一步:首先肯定是输入,那么在这里transformer中有两个输入:1.单词X的embedding,2.单词的位置的嵌入,最终总的单词表示,用这两个向量相加得到。

 

第二步:将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。

 

 

第三步:将 Encoder 输出的编码信息矩阵C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1 ~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。

 

上图 Decoder 接收了 Encoder 的编码矩阵C,然后首先输入一个翻译开始符 "<Begin>",预测第一个单词 "I";然后输入翻译开始符 "<Begin>" 和单词 "I",预测单词 "have",以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。

2. Transformer 的输入

Transformer 中单词的输入表示 x单词 Embedding 和位置 Embedding (Positional Encoding)相加得到。

 

2.1 单词 Embedding

单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。

2.2 位置 Embedding

Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。因为 Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。所以 Transformer 中使用位置 Embedding 获取并保存单词在序列中的相对或绝对位置也就是位置信息

位置 Embedding 用PE表示,PE 的维度与单词 Embedding 是一样的。获取位置信息有两种方法:1. PE 可以通过训练得到,2.也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:

 

 

其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。使用这种公式计算 PE 有以下的好处:

  • 使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
  • 可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 x就是 Transformer 的输入。

3. Self-Attention(自注意力机制)

 

上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。

因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。

3.1 Self-Attention 结构

 

上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

3.2 Q, K, V 的计算

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。

 

3.3 Self-Attention 的输出

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:

 

公式中计算矩阵QK每一行向量的内积,为了防止内积过大,因此除以  的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以 ,1234 表示的是句子中的单词。

 

得到之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.

 

 

得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z

 

上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出  等于所有单词 i 的值  根据 attention 系数的比例加在一起得到,如下图

 

 

3.4 Multi-Head Attention

在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。

 

从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z

 

得到 8 个输出矩阵    之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z

 

可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。

4. Encoder 结构

 

上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

4.1 Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:

 

其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 维度是一样的,所以可以相加)。

Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:

 

Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

4.2 Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。

 

X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。

4.3 组成 Encoder

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵,并输出一个矩阵。通过多个 Encoder block 叠加就可以组成 Encoder。

 

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。

 

5. Decoder 结构

 

上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:

  • 包含两个 Multi-Head Attention 层。
  • 第一个 Multi-Head Attention 层采用了 Masked 操作。
  • 第二个 Multi-Head Attention 层的K, V矩阵使用 Encoder 的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
  • 最后有一个 Softmax 层计算下一个翻译单词的概率。

5.1 第一个 Multi-Head Attention

Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 "我有一只猫" 翻译成 "I have a cat" 为例,了解一下 Masked 操作。

下面的描述中使用了类似 Teacher Forcing 的概念。在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 "<Begin>" 预测出第一个单词为 "I",然后根据输入 "<Begin> I" 预测下一个单词 "have"。

 

Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 (<Begin> I have a cat) 和对应输出 (I have a cat <end>) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 "<Begin> I have a cat <end>"。

第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 "<Begin> I have a cat" (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。

 

第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q 的乘积 

 

 

 

第三步:在得到 之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:

 

 

得到 Mask 之后在 Mask 上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。

 

第四步:使用 Mask 与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量  是只包含单词 1 信息的。

 

 

第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵  ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出 然后计算得到第一个 Multi-Head Attention 的输出ZZ与输入X维度一样。

5.2 第二个 Multi-Head Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一样

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。

5.3 Softmax 预测输出单词

Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:

 

Softmax 根据输出矩阵的每一行预测下一个单词:

这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。

6. Transformer 总结

  • Transformer 与 RNN 不同,可以比较好地并行训练。
  • Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
  • Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。

Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

小杨变老杨
关注 关注
  • 11
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
【MindSpore易点通】Transformer编码解码
xi_xiyu的博客
09-09 2107
Decoder结构图蓝框部分为Transformer的Decoder block结构,包含两个Multi-Head Attention层。第一个Multi-Head Attention层采用了Masked操作。第二个Multi-Head Attention层的K, V矩阵使用 Encoder编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。最后有一个 Softmax 层计算下一个翻译单词的概率。
解码Transformer:深入探究模型的计算复杂度
07-27
### 解码Transformer:深入探究模型的计算复杂度 自从2017年Vaswani等人在他们的开创性论文《Attention Is All You Need》首次提出Transformer架构以来,该架构便以其独特的自注意力机制和高效的并行处理能力,在...
transformer理解
qq_22613769的博客
08-31 6428
Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 TransformerTransformer 模型使用了 Self-Attention 机制,不采用 RNN和LSTM 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息。 1.Transformer 结构 首先介绍 Transformer 的整体结构,下图是 Transformer 用于英文翻译的整体结构。 ...
Transformer 系列三:Encoder编码器和Decoder解码
最新发布
weixin_44174227的博客
08-29 2992
Transformer使用了"Encoder-Decoder" 编码器-解码器的结构,这种结构被广泛应用于处理序列到序列(seq2seq)的学习任务。这种结构由编码器和解码器两大部分组成,编码(encoding)是一个模式提取的过程,将输入句子的特征提取出来,存储在一个间隐状态空间(hidden state);而解码(decoding)则是将encoder提取出来的特征进行重建,解码成为我们期望的输出。如翻译任务:将输入的英语经过编码编码间表示,再使用解码器将这个间表示解码文。
Transformer模型详解
人无远虑,必有近忧
01-19 2万+
transformer结构是google在2017年的Attention Is All You Need论文提出,在NLP的多个任务上取得了非常好的效果,可以说目前NLP发展都离不开transformer。最大特点是抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成。 由于其出色性能以及对下游任务的友好性或者说下游任务仅仅微调即可得到不错效果,在计算机视觉领域不断有人尝试将transformer引入,近期也出现了一些效果不错的尝试,典型的如目标检测领域的detr和可变形detr,分
Transformer 模型详解
热门推荐
步入人工智能
05-29 27万+
本内容主要介绍 Transformer 模型的具体实现。
【超详细】【原理篇&实战篇】一文读懂Transformer
艰难困苦,玉汝于成。
11-02 20万+
Transformer是一种用于自然语言处理(NLP)和其他序列到序列(sequence-to-sequence)任务的深度学习模型架构,它在2017年由Vaswani等人首次提出。Transformer架构引入了自注意力机制(self-attention mechanism),这是一个关键的创新,使其在处理序列数据时表现出色。
基于Transformer编解码模型的文章标题自动生成评论、用BERT进行序列标记和文本分类的模板完整源码+数据集.zip
03-26
【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载...基于Transformer编解码模型的Hacker News文章标题自动生成评论、用BERT进行序列标记和文本分类的模板源码+数据集.zip
基于Transformer编解码模型的文章标题自动生成评论、用BERT进行序列标记和文本分类的模板源码+数据集.zip
01-16
1、该资源内项目代码经过严格调试,下载即用确保可以运行! 2、该资源适合计算机相关专业(如计科...基于Transformer编解码模型的Hacker News文章标题自动生成评论、用BERT进行序列标记和文本分类的模板源码+数据集.zip
基于TensorFlow的Transformer翻译模型.zip
03-28
Transformer模型由多个称为“编码器”(Encoder)和“解码器”(Decoder)的层堆叠而成,每一层又包含多头自注意力(Multi-Head Attention)和前馈神经网络(Feed-Forward Neural Network)等组件。 在TensorFlow...
Transformer模型详解——transformer模型
zhishi0000的博客
06-30 4164
解码器栈的输出是一个 float 向量。我们怎么把这个向量转换为一个词呢?通过一个线性层再加上一个 Softmax 层实现。线性层是一个简单的全连接神经网络,其将解码器栈的输出向量映射到一个更长的向量,这个向量被称为 logits 向量。现在假设我们的模型有 10000 个英文单词(模型的输出词汇表)。因此 logits 向量有 10000 个数字,每个数表示一个单词的分数。然后,Softmax 层会把这些分数转换为概率(把所有的分数转换为正数,并且加起来等于 1)。
Transformer模型
m0_70066267的博客
08-01 1993
Transformer模型是一种在自然语言处理(NLP)及其他序列到序列(Seq2Seq)任务广泛使用的深度学习模型框架。其基本原理和核心组件,尤其是自注意力机制(Self-Attention Mechanism),对于理解该模型的工作方式至关重要。以下是对Transformer模型基本原理和自注意力机制的详细解释。
一文彻底搞懂 Transformer(图解+代码手撕)
2201_75499313的博客
04-21 3955
Transformer 通过其捕捉上下文和理解语言的能力,彻底改变了自然语言处理(NLP)领域。通过注意力机制、编码器-解码器架构和多头注意力,它们使得诸如机器翻译和情感分析等任务得以在前所未有的规模上实现。随着我们继续探索诸如 BERT 和 GPT 等模型,很明显,Transformer 处于语言理解和生成的前沿。它们对 NLP 的影响深远,而与 Transformer 一起的发现之旅将揭示出该领域更多令人瞩目的进展。研究论文。
一文弄懂 Transformer模型(详解)
weixin_74923758的博客
07-14 2334
Transformer自注意力机制是一种在自然语言处理(NLP)领域广泛使用的机制,特别是在Transformer模型,这种机制允许模型在处理序列数据时,能够捕捉到序列内部不同位置之间的相互关系。1、查询(Query)、键(Key)、值(Value):自注意力机制将输入序列的每个元素视为一个查询,同时将序列的所有元素视为键和值,每个元素都会生成对应的查询、键和值表示。2、注意力分散:对于序列的每个元素。模型会计算它与序列其他所有元素的注意力分散。
Transformer 模型详解(转载)
renqianying325的博客
12-21 4124
作者: 龙心尘 时间:2019年1月 出处:https://blog.csdn.net/longxinchen_ml/article/details/86533005 审校:百度NLP、龙心尘 翻译:张驰、毅航、Conrad 原作者:Jay Alammar 原链接:https://...
Transformer理解
陶将的博客
10-17 1541
Transformer 是一种著名的深度学习模型,现已经被广泛应用于自然语言处理、计算机视觉和语音处理等等各个领域。Transformer最初是作为机器翻译的序列到序列模型提出的。后来的工作表明,基于Transformer的预训练模型可以在各种任务上实现最优性能。因此,Transformer已经成为NLP的主流架构。最近,使用Transformer来完成视觉任务成为一个新的研究方向,ViT(Vision Transformer)使用Transformer进行图像分类,DERT使用Transformer进行
transformer做为编解码
08-26
Transformer是一种基于自注意力机制的编解码器,广泛应用于自然语言处理任务。它是由Google提出的一种神经网络模型,用于处理序列到序列的任务,例如机器翻译、文本摘要、对话生成等。 Transformer采用了注意力机制来捕捉输入序列不同位置之间的依赖关系,而不像传统的循环神经网络(RNN)需要按顺序逐步处理。它通过多头注意力机制将输入序列的不同位置进行相互交互,从而获得全局的上下文信息。 Transformer编码器和解码器两部分组成。编码器将输入序列映射到一个高维的表示空间,解码器则根据编码器的输出和上一个时间步的预测结果,生成下一个时间步的输出。在训练过程Transformer使用了自回归的方式,即每个时间步的输入是之前时间步的输出。 通过自注意力机制和残差连接,Transformer在处理长序列时能够更好地捕捉全局上下文信息,且与RNN相比,可以并行化计算,加速训练和推理过程。这使得Transformer成为了现代自然语言处理任务的重要模型之一。
写文章

热门文章

  • tensorflow1.14.0版本安装指南 4350
  • Transformer编解码模型 4269
  • TF-IDF 2879
  • GPT语言模型 2568
  • ELMO语言模型 2500

最新评论

  • tensorflow1.14.0版本安装指南

    小杨变老杨: 可以通过命令进入,cmd进入黑窗口,conda activate 环境名

  • tensorflow1.14.0版本安装指南

    西西弗游世界: 博主您好请问怎样进入python虚拟环境

  • Transformer编解码模型

    1是你啊: 角度很独特,softmax部分和mask部分 分析的特别好

  • rasa安装,聊天机器人项目调试

    黄海-: 本篇文章运用了生动形象的描绘出了微妙微哨的rasa机器人, 表达出了作者对rasa机器人项目的高度关注,也从侧面说明了, 作者对 "科技改变生活" 这个词语的期盼, 本篇文章作者运用和蔼,亲切的口吻, 给我们,描述这个rasa机器人项目,起到了承上启下的作用, 可以看出来作者对以后人工智能具有人性化的高度期盼!!!!!!! 作者你看我这段话的时候就和我看你文章的时候一个心情, 想懂却懂不了

  • word2vec介绍

    西元前前前: 你别说, 这个博主还挺帅

大家在看

  • 【AIGC】AI时代降临,AI文案写作、AI绘画、AI数据处理 833
  • Java:抽象类和接口 395
  • C-输入数组查找元素-二分查找(数列升序)
  • 7个提升Google搜寻排名的SEO技巧(Google RankBrain) 813
  • 基于Spring boot+Vue 宠物用品交易管理系统(源码+LW+部署讲解+数据库+ppt)

最新文章

  • 知识图谱之事件抽取
  • rasa安装,聊天机器人项目调试
  • 文本纠错项目代码调试
2023年7篇
2022年77篇

目录

目录

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家玻璃钢花盆找哪家公司好福建节庆商场美陈生产厂家海口玻璃钢雕塑设计哪里有福州玻璃钢花盆四川欧式雕塑玻璃钢周口发光玻璃钢雕塑生产厂家湖州户内玻璃钢雕塑定做价格动物玻璃钢卡通雕塑设计厂家汤阴玻璃钢雕塑厂家铜陵水果玻璃钢雕塑订做价格授权品牌 商场美陈福建艺术商场美陈五华区玻璃钢雕塑加工宜昌玻璃钢考拉雕塑厂家佛山玻璃钢雕塑厂家现货玻璃钢道具雕塑制作玻璃钢10米啤酒瓶雕塑生产玻璃钢人物雕塑佛像玻璃钢雕塑销售厂家南通玻璃钢卡通门头雕塑设计云南玻璃钢景观雕塑室內玻璃钢艺术雕塑玻璃钢雕塑卡通总代直销四川秋季商场美陈沈阳小区玻璃钢雕塑公司玻璃钢人像雕塑专业平台玻璃钢校园不锈钢景观雕塑生产通化玻璃钢雕塑公司玻璃钢鹿动物雕塑价格扬中玻璃钢雕塑定制香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化