PVT论文Pytorch代码解读

2 篇文章 0 订阅
订阅专栏

PVT论文代码实现

论文地址:https://arxiv.org/abs/2102.12122v2
Pytorch代码地址:https://github.com/whai362/PVT

PVT结构图

PVT网络结构图

PVT有什么用

  1. PVT将金字塔结构结合到了Transformer中,提高特征图的分辨率,有利于将Transformer应用到语义分割、目标检测等下游任务中。
    在这里插入图片描述

  2. 提出了Spatial-Reduction Attention来替代原来的Multi-Head Attention,显著降低运算成本。
    在这里插入图片描述

PVT结构代码

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg

__all__ = [
    'pvt_tiny', 'pvt_small', 'pvt_medium', 'pvt_large'
]


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) # 相当于下采样
            self.norm = nn.LayerNorm(dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        # B,N,T,Tc -> B,T,N,Tc
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            # B,QK,N,H,C -> ... -> QK,B,T,N,Tc
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # 把k,v拆分出来
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding  切图重排
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        # assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
        #     f"img_size {img_size} should be divided by patch_size {patch_size}."
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W

        # 图像切分重排 Conv2d写法
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)  # 把输入图片切成多个小块
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        B, C, H, W = x.shape

        x = self.proj(x).flatten(2).transpose(1, 2) # 切完之后还需要将他变成 [B,N,C]
        x = self.norm(x)
        H, W = H // self.patch_size[0], W // self.patch_size[1]

        return x, (H, W)


class PyramidVisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.num_stages = num_stages

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0

        for i in range(num_stages):
            patch_embed = PatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                     patch_size=patch_size if i == 0 else 2,
                                     in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                     embed_dim=embed_dims[i])
            num_patches = patch_embed.num_patches if i != num_stages - 1 else patch_embed.num_patches + 1
            pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dims[i]))
            pos_drop = nn.Dropout(p=drop_rate)

            block = nn.ModuleList([Block(
                dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
                qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j],
                norm_layer=norm_layer, sr_ratio=sr_ratios[i])
                for j in range(depths[i])])
            cur += depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"pos_embed{i + 1}", pos_embed)
            setattr(self, f"pos_drop{i + 1}", pos_drop)
            setattr(self, f"block{i + 1}", block)

        self.norm = norm_layer(embed_dims[3])

        # cls_token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[3]))

        # classification head
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        # init weights
        for i in range(num_stages):
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            trunc_normal_(pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)


    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        # return {'pos_embed', 'cls_token'} # has pos_embed may be better
        return {'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _get_pos_embed(self, pos_embed, patch_embed, H, W):
        if H * W == self.patch_embed1.num_patches:
            return pos_embed
        else:  # 维度不同的话,需要插值
            return F.interpolate(
                pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
                size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)

    def forward_features(self, x):
        B = x.shape[0]

        for i in range(self.num_stages):  # 有几个stage就循环几次
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            pos_drop = getattr(self, f"pos_drop{i + 1}")
            block = getattr(self, f"block{i + 1}")

            # patch_emded操作(切片)
            x, (H, W) = patch_embed(x)

            if i == self.num_stages - 1:
                cls_tokens = self.cls_token.expand(B, -1, -1)
                x = torch.cat((cls_tokens, x), dim=1)
                pos_embed_ = self._get_pos_embed(pos_embed[:, 1:], patch_embed, H, W)
                pos_embed = torch.cat((pos_embed[:, 0:1], pos_embed_), dim=1)  # 在最后一个stage时    加cls_token
            else:
                # positional embedding操作
                pos_embed = self._get_pos_embed(pos_embed, patch_embed, H, W)
                # 为什么只在最后一层加cls_token?
                # 一个是加在前面没啥意义;
                # 另一个是如果加在前面,在emb时,图片的切块和还原维度会受到影响。


            x = pos_drop(x + pos_embed)
            # 进Transformer Block
            for blk in block:
                x = blk(x, H, W)
            if i != self.num_stages - 1:
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

        x = self.norm(x)

        return x[:, 0]  # 第0列代表cls_token

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)

        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v

    return out_dict


@register_model
def pvt_tiny(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


@register_model
def pvt_small(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    model.default_cfg = _cfg()

    return model


@register_model
def pvt_medium(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


@register_model
def pvt_large(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


@register_model
def pvt_huge_v2(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[128, 256, 512, 768], num_heads=[2, 4, 8, 12], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 10, 60, 3], sr_ratios=[8, 4, 2, 1],
        # drop_rate=0.0, drop_path_rate=0.02)
        **kwargs)
    model.default_cfg = _cfg()

    return model

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions论文以及代码解析
Hide on bush
09-27 3225
Pyramid Vision Transformer1. Abstract2. Introduction3. Method3.1. Overall Architecture3.2. Transformer Encoder3.3. More Details4. PVT-V1代码解析4.1. main脚本4.2. pvt脚本4.2.1. PyramidVisionTransformer类的init4.2.2. PyramidVisionTransformer类的forward 论文地址:PVT-V1版本论文
Swin Transformer原理与代码实例讲解
AI天才研究院
07-14 749
Swin Transformer原理与代码实例讲解 1. 背景介绍 1.1 问题的由来 在深度学习时代,卷积神经网络(CNN)因其在网络视觉识别任务上的卓越表现而备受推崇。然而,随着模型向更深、更大规模发展,计算成本也随之增加
PVT transformer pytorch代码
04-14
PVT transformer pytorch代码
PVT论文精读:Pyramid Vision Transformer: A Versatile Backbone for Dense Predictionwithout Convolutions
qq_52053775的博客
11-05 3065
VIT很难用于密集检测任务,作者提出了PVT,(1)不同于产生低分辨率输出和引起高计算和内存成本的VIT,PVT不仅可以训练密集分区的图像来实现高输出分辨率,也使用图像金字塔来减少大型特征地图的计算。(2) PVT继承了CNN和transformer的优点,使其成为各种transformer架构的视觉任务的统一骨干,可以作为CNN骨干的直接替代。图3描述了PVT的概述。结合我们的PVT和DETR,我们可以构建一个端到端目标检测系统,而不需要卷积和手工制作的组件,如密集的锚点和非最大抑制(NMS)。
PVT:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions论文学习
dawnyi_yang的博客
04-04 3098
目录摘要论文结构方法CNN金字塔结构Transformer编码器维度分析实验及结果图像分类目标检测其他 摘要 PVT是把金字塔结构引入到Transformer中,使得它可以像ResNet那样无缝接入到各种下游任务中(如:物体检测,语义分割),同时也取得了非常不错的效果。 论文地址:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions 代码地址:PVT 论文结构 第一部分介绍了以C
论文笔记】PVT系列论文阅读笔记
AI爱好者的博客,分享计算机领域相关知识
03-19 5930
ViT适用于处理图像分类任务,但是不适合直接应用到密集预测任务,因为ViT的输出分辨率较低(number of patches)。PVT(Pyramid Vision Transformer)通过巧妙地设计,可以输出高分辨率的特征图,同时引入了SRA(spatial reduction attention)来减少计算量。类似CNN,PVT输出多分辨率特征图,可应用于各类下游任务(语义分割、目标检测等)。
PVTv2 论文笔记
Tianchao龙虾
10-27 2206
PVTv2: Improved Baselines with Pyramid Vision Transformer PVTv2 论文链接: https://arxiv.org/abs/2106.13797 一、 Problem Statement PVTv1 有三个缺点: 把图片当成是non-overlapping patches的序列,一定程度上丢失了图像的局部联系。 PVTv1的position encoding是固定大小的,对处理任意图片大小不灵活。 当处理大分辨率的输入图像时候,计算发杂度相对
PVT:可用于密集任务backbone的金字塔视觉transformer!
lujohn3li
05-11 686
点蓝色字关注“机器学习算法工程师”设为星标,干货直达!基于detectron2实现的PVT开源了,欢迎star:https://github.com/xiaohu2015/pvt_detectron2自从ViT之后,关于vision transformer的研究呈井喷式爆发,从思路上分主要沿着两大个方向,一是提升ViT在图像分类的效果;二就是将ViT应用在其它图像任务中,比如分割和检测任务上,这里介绍的PVT(Pyramid Vision Transformer) 就属于后者。PVT相比ViT引入了和CNN
论文阅读记录——PVT
m0_53789001的博客
04-03 880
虽然卷积神经网络(cnn)在计算机视觉方面取得了巨大的成功,但本研究研究了一个更简单、无卷积的骨干网络,可用于许多密集预测任务。与最近提出的专门用于图像分类的视觉变压器(ViT)不同,我们介绍了金字塔视觉Transformer(PVT),它克服了将Transformer移植到各种密集预测任务中的困难。与目前的技术相比,PVT有几个优点。
PVT v2 原理与代码解析
00000cj的博客
06-07 1492
针对PVT v1存在的问题,PVT v2引入了以下改进 线性空间降维注意力:通过使用线性空间降维注意力(linear spatial reduction attention)来降低计算成本 重叠的patch embedding:通过重叠的patch embedding来保留图像的局部连续性 卷积FFN:通过引入卷积feed-forward network来增强特征表示能力,并去掉了固定大小的位置编码,采用zero padding位置编码,从而提高了处理任意大小输入的灵活性
双电机PVT画圆步进点代码
01-04
亲手撰写,并测试可用。用于X\Y步进电机PVT模式下求取圆形步进点
GLONASS 卫星位置PVT C代码
05-17
GLONASS 卫星位置PVT C代码 c代码 GLONASS 卫星位置PVT C代码 c代码
Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读
00000cj的博客
06-07 1354
为了解决上述问题,作者提出了 Pyramid Vision Transformer (PVT), PVT结合了卷积神经网络的金字塔结构和Transformer的全局感受野,旨在克服传统Transformer在处理密集预测任务时遇到的分辨率低、计算和内存开销大的问题。它可以作为 CNN 骨干网络的替代品,用于多种下游任务,包括图像级预测和像素级密集预测。具体包括:
PVT(Pyramid Vision Transformer)算法整理
gentlelu的博客
06-11 4109
整体架构
[PVT]运行记录
weixin_41529093的博客
07-01 545
仅作为记录,大佬请跳过。 github位置 调试做法 完全按照github中README.md里的做法即可: 1、博主在原有的root环境(未建立虚拟环境),仅将github中的classification放在PVT的根目录[PVT项目包括分类、识别和分割,这里只使用分类] 2、在classification目录,新建imagenet文件夹; 3、然后使用软连接ln -s,将服务器上的分类数据(按这个github项目的数据结构组成的),软连接到imagenet文件夹; 所要求的数据结构: 博主软连接
【语义分割】2021-PVT2 CVMJ
wujing1_1的博客
07-08 1118
计算机视觉中的Transformer最近取得了令人鼓舞的进展。在这项工作中,作者通过添加3个改进设计来改进原始金字塔视觉Transformer(PVTv1),其中包括:通过这些简单的修改,PVTv2在分类、检测和分割方面显著优于PVTv1。此外,PVTv2在ImageNet-1K预训练下取得了比近期作品(包括 Swin Transformer)更好的性能。PVTv1[33]的主要局限性有以下三个方面:(1)与ViT类似,在处理高分辨率输入时(如短边为800像素),PVTv1的计算复杂度相对较大。(2) PV
[Transformer] PVT系列:PVT & CPVT & Twins
Cherry的笔记本
03-04 1790
PVT:《Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions》 论文: https://arxiv.org/abs/2102.12122 源码:https://github.com/whai362/PVT 把金字塔结构引入Transformer,简单地堆叠多个独立的Transformer encoder, 在每个Stage中通过Patch Embedding来逐...
PVT(Pyramid Vision Transformer)学习记录
pengxiang1998的博客
05-16 3083
x为torch.Size([2, 3136, 64]),首先经过permute进行维度变换为torch.Size([2, 64,3136]),随后经过reshape为:torch.Size([2, 64, 56, 56])值得注意的是,只有stage1上patch=4,在后面的三个stage上patch都为2,这样也就参考卷积,其是一个二倍大小的关系。首先我们的输入图片为torch.Size([2, 3, 224, 224]),即batch-size=2,channel=3,W=H=224。
pytorch resnet源码分析
最新发布
LIjin_1006的博客
10-15 949
conv3: 1x1 卷积层,输入通道数为 width,输出通道数为 planes * self.expansion。# Bottleneck 在 torchvision 中将下采样的步长放在 3x3 的卷积层 (self.conv2),# 第一个卷积层,输入通道数为 3,输出通道数为 64。# inplace=True:表示操作将在原始张量上直接进行,而不创建新的张量。# 如果将批次规范化放在卷积层之前,那么卷积层的输入数据分布将受到前一层输出数据分布的影响,这可能导致不稳定的数。
pycharm pvt2运行代码
05-10
要在 PyCharm 中运行代码,您可以按照以下步骤操作: 1. 打开 PyCharm,并创建一个新的项目或打开现有项目。 2. 在项目中创建一个新的 Python 文件。 3. 编写您的 Python 代码。 4. 单击工具栏中的“运行”按钮或...
写文章

热门文章

  • python中的各种输出方式 34353
  • Anaconda + VSCode 配置python环境 22047
  • N1完美刷入Armbian系统 8919
  • 51单片机——LED流水灯 4357
  • 数据分析——1.环境搭建(Jupyter Lab安装教程) 4323

分类专栏

  • 论文代码详解 2篇
  • 数据分析 1篇
  • 深度学习项目实战 1篇

最新评论

  • Ubuntu18.04配置机器学习环境(超详细)

    sdblt: 为啥报错 note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip.

  • Anaconda + VSCode 配置python环境

    Shuowei Zhang: 应该是环境没有选对吧

  • Anaconda + VSCode 配置python环境

    Winsmoke: 大佬,我想问一下这么配置之后run python file可以正常执行,run code显示no module怎么解决啊

  • python中的各种输出方式

    m0_68578016: 好棒,好棒

  • 51单片机——LED流水灯

    weixin_42671692: 你好,百度网盘地址不存在,可以在创建一个吗?

最新文章

  • ViT论文Pytorch代码解读
  • 51单片机——串口通信
  • 51单片机——定时器
2023年2篇
2022年12篇
2021年5篇
2020年14篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家临沧市玻璃钢雕塑设计多少钱鹤岗商场美陈临沂玻璃钢雕塑模型玻璃钢雕塑一般厚度肇庆玻璃钢花盆花器蒲县玻璃钢花盆花器北京玻璃钢仿铜雕塑厂家足球玻璃钢雕塑图片宿迁玻璃钢雕塑定做价格福建玻璃钢卡通雕塑供应商玻璃钢雕塑暴力熊浅白色条纹状玻璃钢花盆防城港玻璃钢雕塑定做合和二仙玻璃钢雕塑江苏秋季商场美陈多少钱百色玻璃钢座椅雕塑制作玻璃钢海产品雕塑门头图片小品玻璃钢卡通雕塑批发沈阳玻璃钢骆驼雕塑郑州知名玻璃钢彩绘雕塑报价大同玻璃钢雕塑生产厂家玻璃钢广场雕塑定做价格玻璃钢雕塑什么时候好玻璃钢螃蟹雕塑价格深圳主题商场美陈批发价大象玻璃钢雕塑生产厂家南通大型玻璃钢雕塑上海周年庆典商场美陈报价四川玻璃钢雕塑开发鹿邑定做玻璃钢雕塑厂电话香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化